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An experimental investigation of the stability of longitudinal rolls in a horizontal layer
heated from below in the presence of a Poiseuille flow is carried out. This study fol-
lows on from the theoretical work of Clever & Busse (J. Fluid Mech., vol. 229, 1991,
p. 517) who detected a wavy instability for a range of relatively low Rayleigh and
Reynolds numbers depending on the Prandtl number. In the present study, an air flow
is circulating in a rectangular channel of transverse aspect ratio 10 for Rayleigh
numbers of 6300 and 9000 and Reynolds numbers from 100 to 174. The system ex-
hibits a wavy pattern only if the flow is continuously excited. The amplitude of the
waves grows as they propagate downstream and the frequency of the oscillations is
equal to the frequency of the imposed disturbance. The bifurcation from steady longi-
tudinal rolls to unsteady wavy rolls is thus a convective instability. A mode by mode
study is performed by measuring the wave velocity and the spatial growth of the in-
stability along the channel for a large range of the imposed frequency. The phase velo-
city is found to depend only on the Reynolds number, and is nearly equal to the bulk
velocity of the flow for all the modes in the range of parameters under study. The
maximum spatial growth rate corresponding to the most unstable mode as well as
the corresponding frequency decrease with decreasing Reynolds number or Rayleigh
number, providing a decrease in the wavelength. This feature is in agreement with the
theoretical results of Clever & Busse (1991).

1. Introduction
Stability of convection rolls in a horizontal layer of infinite extent heated from below

has been extensively studied by F. H. Busse and co-authors in the 1970s. Many studies
have been devoted to the onset of convection rolls in fully developed shear flows and a
review of existing work was performed by Kelly (1994). Next, we briefly recall which is
the preferred mode of convection arising from the primary destabilization of the basic
static state when a laminar flow is imposed on an unstably stratified layer, referred
as the Rayleigh–Bénard–Poiseuille (RBP) system in the literature. A linear stability
analysis performed by Gage & Reid (1968) showed that the most unstable mode for
an infinite layer corresponds to convection rolls aligned with the direction of the flow.
For these so-called longitudinal rolls, the critical Rayleigh number is not dependent on
the Reynolds and Prandtl numbers, namely Racr =Racr (Re = 0) = 1708, ∀Pr. These
theoretical results are consistent with experimental studies conducted in channels of
large transverse extent for sufficiently high Reynolds numbers (Akiyama, Hwang &
Cheng 1971; Ostrach & Kamotani 1975; Fukui, Nakajima & Ueda 1983). However,
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the existence of stable travelling convection rolls with axes perpendicular to the flow
(transverse rolls) has been detected for low Reynolds numbers and/or narrow chan-
nels, due to the presence of lateral boundaries in the system (Luijkx, Platten & Legros
1981; Ouazzani et al. 1989; Ouazzani, Platten & Mojtabi 1990). For the longitudinal
roll solution, the effect of confinement on the critical value becomes negligible for
systems of transverse aspect ratios greater than 5, whatever the Prandtl and Reynolds
numbers (Luijkx & Platten 1981).

Linear temporal stability analyses are nevertheless not sufficient to understand the
experimental results of Ouazzani et al. (1990). Indeed, there is a region in the (Re,Ra)-
plane where a laminar Poiseuille flow is observed experimentally whereas transverse
rolls are expected from the theory. This contradiction was first removed by Müller,
Lücke & Kamps (1992) who investigated the spatial development of disturbances
using a weakly nonlinear theory in an infinite layer. A transition from absolute to
convective instability was found for the transverse rolls, and the corresponding
boundary in the (Re,Ra)-plane moved closer to the separation line between transverse
and longitudinal patterns experimentally observed by Ouazzani et al. (1990) or cal-
culated by Nicolas, Mojtabi & Platten (1997). A complete review of the literature ded-
icated to the transverse rolls was recently given by Nicolas (2002). Using a linear ana-
lysis based on the study of the system response to an initial impulse, Carrière &
Monkewitz (1999) have shown that, unlike the transverse rolls, the longitudinal rolls
never become absolutely unstable. Moreover, as long as the flow is convectively
unstable, i.e. for a Rayleigh number below the convective/absolute boundary of
transverse rolls, the most amplified mode corresponds to longitudinal rolls. Hence, in
experiments of sufficiently large transverse aspect ratio and sufficiently high level of
noise one should observe longitudinal rolls as long as the nonlinear effects are not
significant, which is consistent with the existing experimental investigations.

In the following, the papers mentioned are only concerned with flows in large aspect
ratio channels (typically greater than 5) and with uniform imposed temperatures on
the top and bottom walls. In physical flows, the longitudinal rolls are always initiated
near the sidewalls of the channel and then propagate gradually to the core as the flow
moves downstream as can be seen from the visualizations reported in Chang, Yu &
Lin (1997), Chang & Lin (1998) or Lir, Chang & Lin (2001) among others. The
presence of lateral boundaries in laboratory experiments could thus be considered as
a perturbation of an ideal unbounded flow allowing for the spontaneous development
of the convective instability. Indeed, in the experiments a conducting state occurs at
the lateral walls leading to horizontal temperature gradients. Consequently, a vertical
ascending buoyancy-driven flow develops next to the walls giving rise to the onset
of the first longitudinal roll as the cold fluid enters the channel. The scenario of
roll formation reported in all the experimental studies results in a symmetric pattern
and an even number of rolls. A numerical study conducted by Narusawa (1993)
showed that the thermal boundary conditions at the inlet or at the walls of the
channel play an important role in the number of rolls and in the length needed to
obtain a fully developed flow. Prior to the study of Carrière & Monkewitz (1999),
many experimental investigations have tried to establish some correlations for the
development length of the rolls (Kamotani & Ostrach 1976; Hwang & Liu 1976;
Chiu & Rosenberger 1987; Chang et al. 1997). Although this quantity is difficult to
define and is strongly dependent on the nature and the magnitude of the noise in
the facilities, all the results are consistent with the fact that the onset of the rolls
moves upstream with increasing the buoyancy-to-inertia ratio, i.e. with decreasing the
Reynolds number and/or increasing the Rayleigh number.
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In most of the experiments cited above, the longitudinal extent of the heated zone
is very limited, and this constrains the investigations to the transient zone. The few ex-
periments that dealt with the fully developed regime report velocity and/or tem-
perature measurements in the longitudinal pattern (Mori & Uchida 1966; Ostrach &
Kamotani 1975; Fukui et al. 1983; Chiu et al. 1987). The only study in the literature
specifically devoted to the stability of the longitudinal rolls in a RBP flow is the
work of Clever & Busse (1991). Using a linear stability analysis performed for an
infinite layer subjected to transverse perturbations, two mechanisms of instability were
described: the oscillatory instability for low Reynolds numbers and high Rayleigh
numbers, well-known in Rayleigh–Bénard convection (Clever & Busse 1974) and the
not so well-known wavy instability also detected in the Couette–Rayleigh–Bénard
configuration (Clever & Busse 1992). The authors noted that, in analogy with the
Rayleigh–Bénard problem (Clever & Busse 1979), for moderate Prandtl number the
skewed varicose instability should be detected before the oscillatory instability by
adding relevant perturbations to the system. For higher Reynolds numbers, a wavy
pattern is observed with the same properties of symmetry as the oscillatory one but
with higher wavelengths in the mean flow direction (typically, for a Prandtl number
of 0.7, the critical wavelength is approximately 10 times the height of the channel but
only double for the oscillatory instability). At the onset of the instability the most
unstable mode is characterized by an infinite wavelength. The minimum Reynolds
number for the onset of the wavy instability changes little with the Prandtl number
but the minimum of the critical Rayleigh number strongly increases with increasing
Prandtl number. The wavy instability is expected to appear for a Reynolds number
above about 70 and for a difference between the critical Rayleigh number for the
wavy instability and the critical Rayleigh number for the longitudinal rolls of 400 for
Pr = 0.7 while this difference reaches 4 × 104 for Pr =7. In the latter case the knot
instability precedes the oscillatory and the wavy instabilities.

Before this theoretical work by Clever & Busse, unsteady behaviour of RBP flows
has been qualitatively invoked in the experimental papers of Avsec (1937), Avsec &
Luntz (1937), Bénard & Avsec (1938), with visualizations of wavy patterns in Avsec
(1937). Ostrach & Kamotani (1975) mentioned irregularities in air flow for high
Rayleigh numbers with an increase in the magnitude of the temperature fluctuations
as the Rayleigh number is increased, which should correspond to the skewed varicose
or the oscillatory instability. Chiu & Rosenberger (1987) have detected a ‘snaking
instability’ on the longitudinal rolls for low Reynolds numbers and high Rayleigh
numbers. More interesting are the unsteady patterns reported by these authors for
higher Reynolds numbers (the Rayleigh number is not given) with a perturbation at
the inlet of the channel introduced by heating the flow in the entrance zone. This
pattern should correspond to the wavy instability, but unfortunately no visualization
is available. Chang et al. (1997) reported unsteady and asymmetric movements in an
air flow at high Rayleigh number and moderate Reynolds number, obviously due to
the oscillatory instability that is conveyed by successive merging and splitting of rolls.
A snaking vortex flow is observed in the experiments by Chang & Lin (1998), but
it also concerns the oscillatory domain of high Rayleigh numbers. The latter studies
are well illustrated but nevertheless quantitative data have not been provided.

The aim of this paper is to investigate the wavy instability arising from the
destabilization of the longitudinal rolls by an experimental approach. In accordance
with the theoretical results of Clever & Busse (1991), experiments are performed using
air (Pr = 0.7) for which the region of the stable rolls as well as the region of the
wavy patterns are large and bounded by moderate values of Rayleigh and Reynolds
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Figure 1. Geometry of the experimental setup.

numbers. Accurate visualizations of the flow provide quantitative measurements of
the wave velocity and frequency as well as the growth rate of the instability along the
channel.

The paper is organized in the following manner. The experimental apparatus is
described in § 2. In § 3 are presented the results concerning the nature of the instability,
the phase velocity measurements and the spatial evolution of the waves along the
channel. Concluding remarks are given in § 4.

2. Presentation of the experiments
2.1. Experimental setup

This section provides a description of the apparatus. More details can be found in
Pabiou (2003). As shown schematically (figure 1), this apparatus has been designed to
generate an air flow in a horizontal differentially heated rectangular channel in order
to span the parameter ranges 30 <Re < 300 and Ra < 12 000. The non-dimensional
quantities are calculated using the bulk velocity Um, the height of the channel H

and the vertical temperature difference �T = T1 − T0. Physical properties are taken
at a reference temperature of 20 ◦C close to the cold temperature T0. The dimensions
of the channel are L × l × H = 2880 × 150 × 14.45 mm, where L, l and H are the
length, the width and the height of the channel respectively, providing a transverse
aspect ratio B = l/H = 10.38. The bottom plate is divided into three regions. A
2m long central heated region is surrounded by two unheated zones: an upstream
development zone of 48 cm sufficient to obtain a fully developed Poiseuille flow at
Re = 300 and a downstream zone of 40 cm to minimize exit effects. The origin of
the x-axis corresponds to the beginning of the heated zone. Figure 2 gives a general
view of the experimental setup. The flow rate is regulated at a constant value by
a flow controller located ahead of a settling chamber connected to the rectangular
channel via a honeycomb structure and a two-dimensional contraction nozzle. The
channel lies on a vibration control system to absorb external perturbations. The
whole experimental setup is inside a thermal regulated room maintained at a constant
temperature around 20 ◦C.



Wavy instability of longitudinal rolls in RBP flows 179

Perturbation apparatus

CCD camera

Cooler

Settling
chamber

MDF

Vibration control system

Copper

injection

Flow controller
Air

Aerosol
Electric heaters

Aluminium

Laser sheet

Air channel
Water channel

Figure 2. Sketch of the experimental apparatus.

180

th
. 5

10
14

, 4
5

Transparent polycarbonate

150

Water

Air

th. 2

th. 10

th. 20

Dimensions mm

Electric heater

Copper

MDF

Thermocouple

Figure 3. Sketch of the channel cross-section (th. stands for thickness).

Flow patterns are visualized using a horizontal laser sheet located at mid-height
of the air channel and oil particles injected in the settling chamber using an aerosol
generator. Observations are performed using a high-resolution (12-bit) digital CCD
camera. Figure 3 shows a sketch of the cross-section of the channel. The cold
temperature at the top boundary is maintained constant around T0 = 20 ◦C using water
circulation in a transparent channel placed above the air channel. The temperature of
the circulating water is measured by five thermocouples distributed on the lower plate
of the water channel. The bottom boundary of the air channel is maintained at a
constant hot temperature T1 using electric heaters. The heated section consists of five
electric heaters placed between an insulating material board and a 10 mm thick copper
plate covered by a 2 mm thick aluminium plate. A closed-loop control is applied to



180 H. Pabiou, S. Mergui and C. Bénard

x

y

Crank disk

Flow

direction

∆θ

Fforc

θ (t) spectrum
10

10

10
0 40 80

Frequency (arbitrary unit)

120 160
z

z

x

H

H/3H/2 θ(t)

∆θ

Side view
(a)

(a)

Figure 4. Perturbation apparatus located at the inlet of the heated zone and power spectrum
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ensure uniform heating along the plate, by measuring the temperature field in the
copper medium using 22 thermocouples embedded at mid-height. For each heater,
the electrical power is a function of the difference between this temperature field and
the desired value. Due to heat losses at the ends of the heated zone, uniformity (in
space and time) is achieved within 0.05 ◦C over a central section of 1.2 m defined by
40 � x � 160 cm (figure 1), providing a real longitudinal aspect ratio A= L/H = 83.
The hot temperature T1 is measured using eight thermocouples embedded inside the
aluminium plate at 0.5mm from the surface.

The wavy instability is investigated by studying the response of the flow to a
disturbance introduced at the inlet of the heated zone. The apparatus represented in
figure 4 and located at x = −2 cm (figure 2) has been designed to impose a perturbation
with a controlled frequency. It is formed by a 1 mm diameter rod parallel to the y-axis
over the whole width of the channel and driven by a crank disk. The movement of
the rod is characterized by its mean position θm and its angular displacement �θ and
is roughly given by the relation

θ(t) = θm + �θ cos(2πfforct + φ), (2.1)

where φ is a constant. In fact, the angular displacement generated by a crank disk
is not perfectly sinusoidal. For our apparatus, the time evolution of the movement
of the rod has been recorded using a digital camera to provide the angular position
θ(t). The modulus of the discrete Fourier transform of θ(t) is shown in figure 4
and one can detect the highest peak linked to the imposed frequency and the first
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harmonic. We will see later that the existence of the harmonic, the amplitude of which
is one order of magnitude less than the amplitude of the fundamental frequency, has
an influence on the observations. For each experiment presented in this paper, the
rod labelled (a) is used to disturb the flow, the other one being always at rest
(θ = 90 ◦).

The flow rate is the sum of the flow imposed by the controller and the aerosol
flow. The relative error in the Reynolds number has been estimated by the relation
0.014 + 2.7/Re. The accuracy of the Rayleigh number values has been evaluated
from the errors in the geometry H , and in the hot T1 and cold T0 temperatures. The
height of the channel in the test section, measured with circulating water in the upper
channel, is H =14.45 ± 0.15mm. This uncertainty provides a relative error of 6 % in
the Rayleigh number. It has been verified that the presence of the air flow (in the
Re range studied) has no detectable influence on the temperature measured by the
thermocouples embedded in the aluminium plate along the test section. For example,
the temperature of the lower plate is T1 = 43.02 ± 0.1 ◦C in the case Ra = 6300.
Concerning the top boundary of the air channel, recall that the polycarbonate
wall between the air and the circulating water has a finite thermal conductivity
(0.19 Wm−1 K−1). The temperature Twater measured in the water channel is thus not
a useful measure of the temperature of the upper boundary of the air channel.
In order to evaluate the temperature gradient in the polycarbonate wall and thus
estimate the real temperature of the upper cold boundary T0 which is out of reach, the
experimental results by Kamotani & Ostrach (1976) have been used. In that study, a
heat transfer coefficient between the air flow and the bottom has been found to be
within 2 < h1 < 7 W m−2 K−1 in the range 30 <Re < 1100 and 103 <Ra < 104, when a
longitudinal rolls pattern has developed. Assuming that this estimation is valid for
the upper plate, the conservation of the heat flux in a one-dimensional model can
be written: h1(T1 − T0) = −(kpc/epc)(Twater − T0), where kpc and epc are the thermal
conductivity and the thickness of the polycarbonate plate respectively. From this
relation, one obtains

0.84(T1 − Twater) < T1 − T0 < 0.95(T1 − Twater),

and the temperature difference was obtained as follows:

�T = T1 − T0 = 0.90(T1 − Twater). (2.2)

In the following, Rayleigh numbers are calculated using the temperature difference
given by equation (2.2). Note that the error associated with this estimation is
systematic, and thus will not be included in the error related to the Rayleigh number
value. As a consequence, the whole set of results presented in this paper may be shifted
slightly along the Rayleigh number axis. The uniformity of the cold temperature field
is characterized by the error associated with temperature measurements in the water
channel Twater. In the case Ra =6300 one obtains a relative error in temperature of
2 % that can be added to the error due to the geometry, providing a relative error on
the Rayleigh number value of about 8 %.

2.2. Experimental protocol

Measurements of the frequency and of the amplitude of the oscillations at a fixed
longitudinal location as well as the wave velocity are performed by image processing.
For the frequency and the amplitude, a small region of the flow extending over about
five rolls is filmed by the digital camera. A typical snapshot frame is displayed at
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Figure 5. Frame extracted from a film and associated mean intensity profile. The dimensions
of the physical region are 4 × 45mm in the x- and y-directions respectively. Dark lines represent
the boundaries between two rolls.
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Figure 6. (a) Time evolution of the transversal displacement of the boundary F5 and (b) cor-
responding norm of the discrete Fourier transform. Longitudinal position x = 160 cm, forcing
frequency fforc = 2, 0 Hz.

the top of figure 5 where a dark zone represents a boundary between two rolls.
The boundaries of the rolls are labelled from F0 to FNroll , where F0 and FNroll are
respectively the right and the left sidewall of the channel when looking downstream.
The transversal displacement of a roll can be thus detected by following the time
evolution of the position of a dark line at a fixed longitudinal location. The large
grey scale of the digital camera allows an accurate determination of the local minima
of the intensity profile (dark pixels) as shown in figure 5. Depending on the spatial
resolution, boundaries appear as dark strips of 10 to 30 pixels width and their
transverse displacements are from about 10 to about 100 pixels. For each film
and each boundary, we choose a fixed window containing the displacement of the
boundary. Then, the minimum of the raw intensity profile is found inside the window.
Figure 6(a) shows a signal obtained, together with the modulus of its discrete Fourier
transform (figure 6b). The predominant peak that appears in figure 6(b) indicates
that the signal is mono-periodic. The amplitude of this leading mode can be directly
obtained from the height of the peak if the duration of the signal is a multiple of
the period (Bergé, Pomeau & Vidal 1988). Under this condition, the amplitude is four
times the height of the peak. The accuracy of this method is mainly determined by
the quality of the films, the size of the corresponding physical region and the frame
rate of the camera.

The phase velocity is determined from images of larger longitudinal extent
(figure 7a) allowing the development of a spatio-temporal representation of the
perturbation. At each time step, a fixed horizontal line of pixels that intersects a
wavy boundary is extracted from the frame. The spatio-temporal representation is
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constructed by juxtaposing each line in chronological order as illustrated in figure 7(b).
If the boundary’s distortion is due to a sinusoidal disturbance, a set of parallel inclined
dark lines will appear on the spatio-temporal image. The slope of these lines represents
the wave speed of the perturbation. The wavelength of a given mode is calculated
from the wave speed measurement. The ratio between a typical wavelength (O(10 cm))
and the amplitude of the transversal displacement (O(1 mm)) is too high to conduct
a direct accurate measurement using an instantaneous image of suitable longitudinal
extent.

2.3. Set of experiments

In this paper, four sets of parameters are investigated: (Re = 100, Ra = 6300);
(Re = 120, Ra = 6300); (Re = 174, Ra = 6300) and (Re = 120, Ra = 9000). In the
(Re,Ra)-plane, these points are located inside the unstable domain predicted by
Clever & Busse (1991). For example, for a Rayleigh number of 6300, Clever &
Busse (1991) found that the wavy instability occurs for Reynolds number greater
than or equal to 65. The point (Re = 120, Ra = 9000) provides results for a larger
Rayleigh number. Moreover the buoyancy-to-inertia ratio (Ra − Racr )/Re2 is the
same for the two cases (Re = 120, Ra = 9000) and (Re = 100, Ra = 6300). For each set
of parameters, the range of frequencies under study is chosen in order to take into
account the most unstable mode.

3. Results
3.1. The longitudinal rolls

According to the numerical study of Nicolas, Luijkx & Platten (2000), 10 longitudinal
rolls are expected to develop in our channel of aspect ratio B = 10.38. In fact, our
experimental apparatus provides 10 or 12 rolls depending on the way the experiment is
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carried out. When an isothermal Poiseuille flow is heated from below, a 10-roll pattern
is always observed. But when differential heating is first applied, then an isothermal
(cold) Poiseuille flow is suddenly imposed, the resulting pattern is dependent on
the position of the perturbation apparatus described in the previous section. The
supports of the horizontal forcing rods located near the sidewalls of the channel
provide disturbances of the flow. Bearing in mind that the longitudinal steady rolls
are convectively unstable and always develop from the lateral walls, the behaviour of
the basic flow, here in terms of number of rolls, is not surprisingly affected by the
apparatus even if it is at rest. If the two forcing rods are inside the flow (θ =90 ◦,
see figure 4), 12 longitudinal rolls arise in the channel. If the rods lie on the bottom
plate, a 10-roll pattern is observed. Once the thermal equilibrium is reached, no
shift from one state to the other has been observed for a given experiment. This
result can be explained by the low thermal conductivity of the upper plate of the
channel that leads to a cold temperature that is not well-imposed and then to a
thermal printing on the wall which tends to maintain the existing pattern. All the
results reported in this paper have been obtained with a 12-longitudinal-roll pattern.
This configuration is qualitatively more sensitive to the wavy instability than the
10-roll configuration. It should be noted that most of the results of Clever & Busse
(1991) are given for a transverse wavenumber of the base solution (longitudinal rolls)
α = 3.117H −1 corresponding to the most unstable mode whereas in our experiment
the transverse wavenumber is α = 3.63H −1 (resp. α = 3.03H −1) in the 12- (resp. 10-)
roll configuration. Moreover, the numerical study dealt with a time evolution of the
perturbations in an unbounded flow whereas in our experiments, we observe a spatial
growth of the perturbations in a channel of finite extent. These significant differences
prevent us from making quantitative comparisons with the results of Clever & Busse
(1991).

3.2. Nature of the instability

Figure 8(a) displays 12 steady longitudinal rolls visualized in the experiment
(Re = 120, Ra =6300) when the rods of the perturbation apparatus are at rest.
A wavy pattern is visualized by applying a permanent excitation to the steady rolls,
as illustrated in figure 8(b). The rolls oscillate in phase and the amplitude of the
oscillations grows along the channel. The same feature is observed for the other
points in the (Re,Ra)-parameter space chosen in the unstable domain predicted by
Clever & Busse (1991).

Figure 9 displays the time variation of the transverse position of a boundary
between two rolls and the magnitude of its spectrum without (figure 9a) and with
(figure 9b) a permanent excitation at frequency fforc =2.75 Hz, for the experiment
(Re = 174, Ra = 6300). Without any imposed perturbation, the signal is characterized
by weak and slow variations and no predominant frequency is detected in the
corresponding spectrum. The very slow displacements of the boundaries have often
been spontaneously observed in our measurements, due to external uncontrolled
perturbations that are not filtered by the vibration control system. Although the
longitudinal roll are likely to be sensitive to this quasi-steady external noise, this
phenomena will not be prejudicial to our study however because the wavy instability is
not sensitive to the low-frequency modes as we will see in § 3.4. When the longitudinal
rolls are continuously excited with a forcing frequency fforc =2.75 Hz, the signal is
sinusoidal, as confirmed by the sharp peak of the corresponding spectrum. Hence, for
these two parameters (Re, Ra), the wavy instability needs to be continuously excited
to remain in the system. Moreover, the frequency of the leading mode is found to
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(a) (b)

Figure 8. Visualization of the flow pattern (Re = 120, Ra = 6300). The flow comes from the
top of the images. (a) 12 steady longitudinal rolls are observed without excitation of the flow
(b) 12 wavy rolls are observed when the flow is continuously excited at the inlet of the heated
zone. Dark lines represent boundaries between two rolls.

be equal to the forcing frequency within a resolution of 0.04 Hz. This result holds
for almost all investigated modes as shown in figure 10 which displays the oscillation
frequency as a function of the imposed frequency for a given boundary. The case
of fforc = 1.0 Hz which shows a leading mode at 2.0 Hz will be examined in § 3.4.
Figure 11 displays the evolution of the amplitude of the oscillations linked with the
mode of frequency f = 2.75 Hz measured along the heated zone for the boundary
F3. The amplitude slightly decreases at the beginning of the channel then increases
downstream from the location x = 1.05 m. In other words, this mode is damped in
the first part of the flow then is amplified in the rest of the channel, proving that the
longitudinal rolls are unstable at this point. It is believed that the decrease observed in
the first part of the channel has a direct bearing on the initial excitation generated
by the forcing rod. The perturbation apparatus mainly provides a vertical displacement
of the fluid while the resulting wavy instability is characterized by a lateral
displacement of the rolls. In other word, the motion generated by the mechanism has a
relatively small effect on the shape of the unstable mode and everything orthogonal to
that mode shape decays. The development of the damping zone should be affected by
changing the properties of the initial signal. Figures 9, 10 and 11 show that the onset
of the wavy pattern is obviously the result of the spatial growth of a perturbation in
the downstream direction that is continuously introduced at the inlet of the heated
zone. The system acts like a noise amplifier, which indicates that the bifurcation from
steady longitudinal rolls to unsteady wavy rolls is a convective instability.
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Figure 10. Frequency of the leading mode as a function of the frequency imposed at the inlet
of the heated zone for the boundary F3, at location x = 1.60m (Re =174, Ra =6300). The
slope of the solid line is equal to unity.

To prove this assertion, figure 12 displays the amplitude of the mode of frequency
f = 2.0Hz at location x = 1.25 m for different values of the angular displacement of
the perturbation system. This measurement is for the most unstable case corresponding
to the experiment (Re = 120, Ra = 9000) as will be seen below. For the other (Re, Ra)
points, similar results are obtained with a smaller range of �θ . On one hand, �θ must
be large enough to produce detectable oscillations and on the other hand large values
are limited by the experimental facilities. For small perturbations, the amplitude of the
response is linear with respect to the amplitude of the imposed excitation. In the case
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Figure 11. Amplitude of the oscillations of the boundary F3 of frequency f =2.75 Hz mea-
sured along the test section for a forcing frequency fforc = 2.75 Hz (Re = 174, Ra =6300).
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Figure 12. Displacement of a boundary between two rolls as a function of the angular
magnitude of the perturbation system, at x = 1.25m. The solid line results from a linear
regression on the measurements in the linear range. The forcing frequency is given, fforc =
2.0Hz, and the mean value on the angle is estimated at θm = 80 ◦ (for notation see equation (2.1))
(Re =120, Ra = 9000).

of figure 12, the linear behaviour holds for angular displacements less than 14 ◦. For
larger angles, nonlinear effects become significant and the amplitude reaches a finite
saturation value of 4 ± 0.5 mm. In an absolutely unstable flow, the amplitude of the
resulting perturbation at any location does not depend on the amplitude of the initial
perturbation. Figure 12 shows that at a fixed location, for angular displacements less
than 14 ◦, the perturbation does not reach its saturated value. Therefore, as the flow
is unstable (it will be seen in § 3.4), the flow is convectively unstable.

At (Re = 120, Ra = 6300) and (Re = 174, Ra =6300) the intrinsic noise generated
by the experimental facilities is low enough to allow observation of the basic state in
the system, but a wavy pattern should occur without applying any perturbation in a
longer channel. We will take advantage of this sufficiently low experimental noise to
carry out a mode by mode study of this flow. However, a wavy pattern spontaneously
arises at the end of the heated zone without additional external perturbation for the
point (Re = 120, Ra = 9000). We will see in § 3.4 that the maximum spatial growth
rate of the instability is high enough in this case to allow the intrinsic noise of the
apparatus to be strongly amplified and to produce a detectable unsteady pattern at
the end of the channel.
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Figure 13. Phase velocity measurements at location x = 1.4 m for different frequencies. The
phase velocity is not dependent on the frequency within ±7% (Re = 174, Ra = 6300).

3.3. Phase velocity of the waves

The phase velocity is measured as described in § 2.2. Figure 13 displays the values
obtained for the experiment (Re = 174, Ra = 6300) as a function of the frequency
of the imposed perturbation. In the case reported here and in all our experiments
we find that the phase velocity only depends on the Reynolds number. Moreover,
the dimensionless value is the same for the three points (Re = 174, Ra = 6300),
(Re = 120, Ra =6300) and (Re =120, Ra = 9000):

Cr = 1.1Um ± 7 %. (3.1)

For the experiment (Re = 100, Ra = 6300), the measurements are not easy due to the
weakness of the transversal displacement of the rolls leading to a larger uncertainty.
These properties of the phase velocity are in agreement with the results given by
Clever & Busse (1991) who found that the phase velocity is equal to the bulk velocity
within a few percent, not dependent on the Rayleigh number and on the frequency.

3.4. Spatial growth of the instability

For the set of parameters considered here, perturbations are small in the first part of
the channel and the linear behaviour of the instability previously described in figure 12
is verified. In all our experiments, the latter zone is long enough to carry out a study
of the spatial evolution of the perturbation in the linear regime. In fact, the saturation
phenomena only occurs in experiment (Re =120, Ra = 9000).

According to the linear theory, the growing part of the evolution of the amplitude
of the oscillations is described by an exponential function:

A(x) ∝ exp(kx), (3.2)

where k is the spatial growth rate; k is found by performing a linear regression on the
experimental points x and the logarithm of A. Figure 14 displays this approximated
curve for the case presented in figure 11 taking into account the growing part of the
evolution only. Using the standard deviation Sd of the residual of the regression, the
accuracy of the spatial growth rate is estimated by k±2Sd/�x, where �x is the length
over which the measurements are conducted. For the case given in figure 14 the spatial
growth rate is 4.0 ± 0.5 m−1.

By varying the frequency of the excitation, the spatial growth rate related to a given
boundary is determined for a range of available frequencies as shown in figure 15(a)
for the case (Re = 174, Ra =6300). The results obtained for all the boundaries under
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Figure 14. Amplification of the oscillations of the boundary F3 along the channel, forcing
frequency fforc = 2.75Hz. Experimental points are fitted using an exponential curve given by
equation (3.2). (Re = 174, Ra =6300).

6
(a) (b)

5

4

3

2

k 
(m

–1
)

1

0

–1

–2
0.5 1.0 1.5 2.0

f (Hz)
2.5 3.0 3.5 4.0

6
F6
F5
F4
F3

5

4

3

2

1

0

–1

–2
0.5 1.0 1.5 2.0

f (Hz)
2.5 3.0 3.5 4.0

Figure 15. Spatial growth rate as a function of the frequency: (a) for the boundary F5 and
(b) for the boundaries F6 F5, F4 and F3. The horizontal line represents the limit of the stability
domain k = 0 (Re = 174, Ra = 6300).

consideration are collected in figure 15(b). Figure 15(a) shows that for boundary F5,
the spatial growth rates are positive in the range of frequencies 1.5–3.50 Hz meaning
that the corresponding modes are unstable, while the modes of frequencies 1.25 Hz
and 1 Hz, with negative growth rates, are stable. Moreover, the points reported in
the figure clearly reveal the existence of a maximum in the spatial growth rate
distribution, connected to the most amplified mode. For this case, the maximum is
kmax = 4.0 ± 0.5 m−1 corresponding to the mode of frequency fmax = 3 ± 0.25 Hz. The
discrepancies noted between the boundaries in figure 15(b) mostly remain within the
error ranges.

As shown in figure 4, the signal generated by the perturbation apparatus is not
sinusoidal. For a forcing frequency fforc = 1 Hz, the crank disk creates two significant
signals at 1 Hz and 2 Hz. For experiment (Re = 174, Ra = 6300), figure 16(a) displays
the damping of the fundamental mode f = fforc = 1 Hz and figure 16(b) displays
the amplification of the harmonic f = 2 Hz which is compared to the amplification of
the fundamental mode 2 Hz measured with a forcing frequency fforc = 2 Hz. We note
that the spatial growth rates linked to the curves of figure 16(b) are equal, providing
a good verification of the validity of our measurements.
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Figure 16. Amplitude of the oscillations of the boundary F5: (a) damping of the fundamental
mode f =1Hz (forcing frequency fforc = 1 Hz), k = −0.7±0.3 m−1 and (b) amplification of the
harmonic f = 2Hz arising from the perturbation apparatus (forcing frequency fforc = 1 Hz),

kh = 2.5 ± 0.5 m−1, and of the fundamental mode f = 2Hz (forcing frequency fforc = 2 Hz),

k = 2.7 ± 0.4 m−1 (Re = 174, Ra =6300).
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Figure 17. Amplitude of the oscillations of the boundary F5 along the channel for three
values of the forcing frequency: fforc = 2 Hz, fforc = 3 Hz and fforc = 3.5 Hz. The horizontal line
represents an amplitude of 0.5 mm (Re = 174, Ra =6300).

We notice that the curve presented in figure 15 is truncated for frequencies above
3.5Hz. Indeed, beyond this value, the variation in the position of a boundary is no
longer detectable. As mentioned in the previous section and displayed in figure 11,
the perturbation is damped at first and then amplified to form the wavy pattern.
The longitudinal location corresponding to the beginning of the amplification moves
downstream as the forcing frequency increases, as illustrated in figure 17 which shows
that the longitudinal location corresponding to a given amplitude (here 0.5 mm) is
proportional to the frequency. So, for a given experiment, the available range of
frequency is bounded, on the one hand due to the finite length of the experimental
channel for the higher frequencies and on the other hand due to an amplitude of the
oscillations too weak to be detected for the lower ones.

For the case (Re =120, Ra = 6300), the curve displayed in figure 18 is more
complete with a clear maximum of the growth rate. Indeed, on decreasing the



Wavy instability of longitudinal rolls in RBP flows 191

6

5

4

3

2

k 
(m

–1
)

1

0

–1

–2
0.5 1.0 1.5 2.0

f  (Hz)
2.5 3.0 3.5 4.0

(Re = 174, Ra = 6300)

(Re = 120, Ra = 6300)

Figure 18. Spatial growth rate measured on boundary F5 as a function of the frequency for
(Re = 120, Ra =6300) and (Re = 174, Ra = 6300) and approximation with a parabolic curve.

kmax (m−1)

(Re, Ra) fmax (Hz) λmax/H F3 F4 F5 F6 F8

(120, 9000) 2.5 3.9 4.6 ± 0.6
(174, 6300) 3.1 4.5 4.1 ± 0.6 5.2 ± 0.5 4.0 ± 0.5 4.2 ± 0.4
(120, 6300) 2.1 4.6 2.8 ± 0.5 2.9 ± 0.2
(100, 6300) 1.7 4.8 2.7 ± 0.8

Clever & Busse (1991)
(162, 3000) 1.7 8.5

Table 1. Most amplified perturbations for the different parameters values. The maximum
growth rate and the corresponding frequency are measured from the approximated parabolic
curve (see for example figure 18). The accuracy in the determination of the frequency fmax is
±0.25 Hz.

Reynolds number at a given Rayleigh number, the onset of the steady longitudinal
rolls moves upstream and for the same magnitude of the inlet excitation, the growing
stage of the perturbation is well developed over the length of the test section. The
same effect could be achieved by increasing the Rayleigh number at a given Reynolds
number.

Figure 18 shows that the maximum spatial growth rate decreases when the Reynolds
number decreases from 174 to 120 at a given Rayleigh number (Ra =6300). This trend
is in agreement with the linear temporal stability analysis of Clever & Busse (1991)
(see their figure 6). Indeed, in the (Re, Ra)-space, the point (Re = 120, Ra = 6300) is
nearer to the neutral curve than the point (Re =174, Ra = 6300). A lower Reynolds
number should provide a lower maximum growth rate. Nevertheless, the transversal
displacements are so weak for the point (Re = 100, Ra = 6300) (� 1mm for the most
amplified mode), that measurements are not accurate enough to show a significant
variation, as can be seen from table 1. But it is clear for the three experiments
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Figure 19. (a) Spatial growth rate for different modes as a function of the frequency, boundary
F8. The most unstable mode is associated with the frequency 2.5 Hz. (b) Fourier transform
modulus arising from the transversal displacement of the boundary F8 at the downstream
location x = 1.50m without imposed perturbation. The frequencies of the unstable modes are
in the range 1–4 (b). (Re = 120, Ra = 9000).

conducted at Ra = 6300 that the range of unstable modes moves toward the low
frequencies with decreasing Re. This feature is consistent with the results of Clever &
Busse (1991) concerning the infinite value of the wavelength on the neutral curve.
Indeed, the wavelength of the most amplified mode is linked to the phase velocity by
λmax =Cr/fmax with Cr proportional to the Reynolds number. Hence, if the Reynolds
number is decreased, it is necessary to detect a large decrease of fmax in order to
provide an increase of the wavelength. The determination of λ has been performed
using this relation and the lack of accuracy associated with the phase velocity
measurement yields merely an estimation of the wavelength. The experimental values
reported in table 1 show that the trend is however verified. For a given Reynolds
number, the maximum spatial growth rate increases with Ra as predicted by the theory
of Clever & Busse (1991) and the corresponding frequency provides a decrease in the
wavelength. On the other hand, the comparison of the case (Re = 174, Ra = 6300)
with the case presented in the paper of Clever & Busse (1991) (Re = 162, Ra = 3000)
shows that there is a real increase in the frequency of the most amplified mode when
the Rayleigh number is significantly increased.

Let us come back to the most unstable case (Re = 120, Ra = 9000). From
figure 19(a), we note that the spatial growth rates are positive in the range of
frequencies under study, 1.25–3.5. Outside this range, the oscillations are too weak
to be accurately measured. The frequency related to the most amplified mode is
2.5Hz with an estimated error of ±0.25 Hz. The corresponding value of k gives the
maximum spatial growth rate: kmax = 4.6 ± 0.6m−1. As mentioned in the previous
section, a wavy pattern is spontaneously observed at the end of the heated zone.
Without any imposed perturbation, the transversal displacement of the boundary F8
has been recorded at the downstream location x = 1.50m where the saturated zone
has been observed. The modulus of its Fourier transform is given in figure 19(b). At
this location, only amplified modes are detected and the spectrum clearly shows that
the frequencies of those unstable modes are inside the range 1–4 Hz, corresponding
to the range of unstable modes detected in figure 19(a). Due to nonlinear interactions
between modes, no dominant sharp peak is detected but the higher ones are quite
located around the previous value, 2.5 Hz, associated with the most amplified mode
obtained from the mode by mode approach.
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4. Concluding remarks
In this paper, experimental work has been developed to trigger an instability

detected in a Rayleigh–Bénard–Poiseuille flow by the theoretical work of Clever &
Busse (1991) but until now never exhibited in physical flows. The first objective
in this study was to create a stable basic state which appears as a longitudinal roll
pattern arising from the destabilization of the Rayleigh–Bénard problem. This primary
instability is convective and thus depends strongly on the experimental facilities. Our
experimental apparatus has been conceived so as to allow the full development of the
basic pattern in the range of parameters (Pr , Re, Ra) for which the wavy instability
was predicted by the theory. For that, air is used as a working fluid in a channel of
height 1.5 cm and width 15 cm, with a heated zone length of 2 m.

The experiments reported in this paper showed that the bifurcation from steady
longitudinal rolls to unsteady wavy rolls is also a convective instability which needs
to be continuously excited to remain in the channel. The low level of intrinsic noise
in the apparatus allowed us to conduct the study in the linear amplification domain
and to characterize the behaviour of the instability using a mode by mode approach.
For the four experiments presented here, the spatial growth rate of the instability has
been determined for all the available modes and the leading mode has been deduced
from the detection of the maximum growth rate. The temporal stability analysis of
Clever & Busse (1991) provides the dynamical characteristics of the most amplified
mode (frequency, phase velocity and wavenumber) but is not able to describe the
spatial development of the perturbation.

Experimentally, a more precise analysis of the wavelength behaviour for a wider
range of parameters (Re, Ra) is planned in order to try to determine the location of the
boundary between the wavy instability and the skewed varicose instability, detected in
preliminary experiments performed in our apparatus for moderate Reynolds numbers
and sufficiently high Rayleigh numbers. To do that, our intention is to improve
the perturbation apparatus in order to generate a transversal excitation of the
flow. With this adjustment, we believe that the damping zone of the perturbation
detected in the first part of the flow will be reduced while the amplification zone is
extended. According to the numerical studies available in the relevant literature, our
experimental channel has been designed to minimize the influence of the sidewalls
on the onset of the longitudinal steady rolls. But it would be of interest to perform
experiments to study how the properties of the wavy instability are affected by the
presence of the lateral walls in regard to the unbounded case usually treated in the
theoretical works.
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1417–1427.

Pabiou, H. 2003 Mise en évidence expérimentale d’une instabilité convective dans un écoulement
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